A KOLAVANE DERIVATIVE FROM LIATRIS SCARIOSA*

FERDINAND BOHLMANN†, MANIRUDDIN AHMED†, HAROLD ROBINSON‡ and ROBERT M. KING‡

†Institute for Organic Chemistry, Technical University Berlin, D-1000 Berlin 12, West Germany; ‡Smithsonian Institution, Washington, DC 20560, U.S.A.

(Received 26 September 1980)

Key Word Index—*Liatris scariosa*; Compositae; diterpene; kolavane derivative; 18-acetoxy-kolav-3-en-15-oic acid; euparin derivative.

Abstract—A new kolavane derivative, 18-acetoxy-kolav-3-en-15-oic acid, has been isolated from Liatris scariosa.

The aerial parts of *Liatris scariosa* Willd afforded lupeol, $\Delta^{9(11)}$ and 12,13-dehydrolupeol and the kolavane derivative 1a. The structure of 1a followed from the ¹H NMR spectrum of its methyl ester 1b (Table 1), if compared with that of the corresponding desacetoxy derivative [1]. The presence of a kolavane derivative was deduced from the H-3 signal and the chemical shifts of two methyl doublets. Compound 1a was concluded to be 18-acetoxy-kolav-3-en-15-oic acid. However, the configurations at C-8, C-9 and C-13 were not established with certainty.

The roots afforded dammadienol, its acetate and the euparin derivatives 2 [2], 3 [2], 4 [3] and 5. The latter compound, 11-hydroxy-10,11-dihydroeuparin (5) has not been isolated before. The ¹H NMR data (see Experimental) showed that 5 was a derivative of 4, formed by addition of water to the isopropenyl group. While most *Liatris* species investigated previously also contained sesquiterpene lactones [4,5] no lactones were detected in the extract of this species.

EXPERIMENTAL

The air-dried plant material was extracted with Et₂O-petrol. CC (Si gel) and TLC (Si gel) of the extracts afforded from the roots (50 g) 10 mg dammadienol, 20 mg of its acetate, 10 mg 2, 12 mg 3, 25 mg 4 and 3 mg 5, while from the aerial parts (100 g) 10 mg of a mixture of lupeyl acetate and its $\Delta^{9(11)}$ and Δ^{12} isomers as well as 4 mg 1a were isolated.

18-Acetoxy-kolav-3-en-15-oic acid (1a). Colourless gum, IR $v_{\rm max}^{\rm CCL}$ cm $^{-1}$: 3330–2600, 1710 (CO₂H), 1740, 1230 (OAc), 1640 (C=C); MS m/z (rel. int.): 364 (M $^+$, 4), 304 (M $^-$ HOAc, 28), 289 (304 – 'Me, 22), 189 (304 – 'CH₂CH₂CH(Me)CH₂COOH, 100). Compound 1a (4 mg) was transformed to its methyl ester by addition of CH₂N₂. TLC (Et₂O-petrol, 1:3) afforded 3 mg 1b, colourless oil; MS m/z (rel. int.): 378.277 (M $^+$, 0.5) (C₂₃H₃₈O₄), 318 (M $^-$ HOAc, 25), 303 (318 – 'Me, 12), 271 (303 – MeOH, 10), 189 (318 – 'CH₂CH₂CH(Me)CH₂CO₂Me, 100).

11-Hydroxy-10,11-dihydro-euparin (5). Colourless gum, IR $v_{max}^{\rm CCL}$ cm $^{-1}$: 3600 (OH), 3300–2600, 1645, 1605 (chelated hydroxy acetophenone); MS m/z (rel. int.): 234.089 (M $^+$, 21) (C₁₃H₁₄O₄),

Table 1. ¹H NMR spectra data of compound 1b (270 MHz, TMS as internal standard, CDCl₃)

H-3	5.68 br.t	H-18	1.11 s
H-14	2.36 dd	H-19	4.59 br.s
H-14'	2.15 dd	H-20	$0.77 \ s$
H-16	0.96 d	OAc	2.08 s
H-17	0.75 d	OMe	3.68 s

J(Hz): 2,3 = 3; 8,17 = 13,16 = 7; 13,14 = 5.5; 13,14' = 7.5; 14,14' = 14.

^{*}Part 340 in the series "Naturally Occurring Terpene Derivatives". For Part 339 see Rustaiyan, A., Dabiri, M., Gupta, R. K. and Bohlmann, F. (1981) Phytochemistry 20, 1429.

1440

219 (M - 'Me, 4), 203 (M - CH₂OH, 100). ¹H NMR (CDCl₃): 6.44 (s, H-3), 7.89 (s, H-4), 6.98 (s, H-7), 2.69 (s, H-9), 3.16 (ddq, H-10, J = 6.5, 5, 7 Hz), 3.88 (dd, H-11, J = 11, 6.5 Hz), 3.83 (dd, H-11', J = 11, 5 Hz), 1.39 (d, H-12).

Acknowledgements—We thank Dr. Hutton of Elkins for plant material and the Deutsche Forschungsgemeinschaft for financial support.

REFERENCES

- Bohlmann, F., Zitzkowski, P., Suwita, A. and Fiedler, L. (1978) Phytochemistry 17, 2101.
- 2. Bohlmann, F. and Suwita, A. (1977) Phytochemistry 16, 783.
- 3. Kamthory, B. and Robertson, A. (1939) J. Chem. Soc. (London) 933.
- 4. Herz, W. and Sharma, R. P. (1976) J. Org. Chem. 41, 1248.
- 5. Bohlmann, F. and Dutta, L. (1979) Phytochemistry 18, 1228.